Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry
نویسندگان
چکیده
Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.
منابع مشابه
Bioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کاملIn silico identification and characterization of the WRKY gene superfamily in pepper (Capsicum annuum L.).
The WRKY family is one of the most important transcription factor families in plants, involved in the regulation of a broad range of biological roles. The recent releases of whole-genome sequences of pepper (Capsicum annuum L.) allow us to perform a genome-wide identification and characterization of the WRKY family. In this study, 61 CaWRKY proteins were identified in the pepper genome. Based o...
متن کاملMnTEdb, a collective resource for mulberry transposable elements
Mulberry has been used as an economically important food crop for the domesticated silkworm for thousands of years, resulting in one of the oldest and well-known plant-herbivore interactions. The genome of Morus notabilis has now been sequenced and there is an opportunity to mine the transposable element (TE) data. To better understand the roles of TEs in structural, functional and evolutionary...
متن کاملIdentification and characterization of Lateral Organ Boundaries Domain genes in mulberry, Morus notabilis
Genes from the plant specific Lateral Organ Boundaries Domain (LBD) family encode transcriptional regulators that have a variety of functions in various physiological and developmental processes. In the present study, 31 LBD genes were identified in the mulberry genome. The genome features of all MnLBD genes and phylogenetic studies with Arabidopsis LBD protein sequences, accompanied by the exp...
متن کاملGenome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus
WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 me...
متن کامل